PPF and the opportunity cost

	Hours Producing			Produced	
Choice	(Trucks)	(Drums)		(Trucks)	(Drums)
A	8	0		4	0
B	6	2		3	10
C	4	4		2	15
D	2	6		1	17
E	0	8		0	18

PPF and the opportunity cost

Example: opportunity cost

Example: opportunity cost

Example: comparative advantage

	Corn (Bushels per acre)	Rye (Bushels per acre)
Kevin	20	4
Maria	28	7

Corn: $4 / 20=1 / 5$
Rye: 20/4=5

Maria's opportunity cost.
Corn: 7/28=1/4
Rye: $28 / 7=4$

Thursday class

Benefits of trade...

Example: benefits of trade

	Corn Country (Bushels per hour of labor)	Jeans (Pairs per hour of labor)
Euphoria	4	16
Contente	6	12

They each have 4 million labor hours available per week that they can use to produce corn, jeans, or a combination of both.

Contente

Corn:	1 M hrs labor	=>	6 M corn
Jeans: 3 M hrs labor	$=>$	36 M jeans	

Euphoria

Corn:	3 M hrs labor	=>	12 M corn
Jeans:	1 M hrs labor	=>	16 M jeans

Example: benefits of trade

		Corn	Jeans
	Country	(Bushels per hour of labor)	(Pairs per hour of labor)
	Euphoria	4	16
Contente	6	12	

Contente's opportunity cost
Corn: $\quad 12 / 6=2$
Jeans: $6 / 12=1 / 2$
Euphoria's opportunity cost
Corn: $\quad 16 / 4=4$
Jeans: $4 / 16=1 / 4$

Example: benefits of trade

Contente's opportunity cost
Corn: $\quad 12 / 6=2 \quad$ Comparative advantage in the production of corm Jeans: $6 / 12=1 / 2$

Euphoria's opportunity cost
Corn: $\quad 16 / 4=4$
Jeans: $4 / 16=1 / 4 \Leftarrow$ Comparative advantage in the production of jeans

Example: benefits of trade

	Country	Corn (Bushels per hour of labor)	Jeans (Pairs per hour of labor)
	Euphoria	4	16
	Contente	6	12

Suppose that each country completely specializes in the production of the good in which it has a comparative advantage, producing only that good.

Contente's production under specialization:
Corn: $\quad 6 * 4=24$
Jeans: $12^{*} 0=0$
Euphoria's production under specialization:
Corn: $\quad 4^{*} 0=0$
Jeans: $16 * 4=64$

Example: benefits of trade

Suppose the country that produces corn trades 14 million bushels of corn to the other country in exchange for 42 million pairs of jeans.

	Euphoria		Contente	
	Corn (Millions of bushels)	Jeans (Millions of pairs)	Corn (Millions of bushels)	Jeans (Millions of pairs)
Without Trade				
Production	12	16	6	36
Consumption	12	16	6	36
With Trade				
Production	0	64	24	0
Trade action	Imports 14 V	Exports 42	Exports 14	Imports 42 V
Consumption	14	22	10	42
Gains from Trade				
Increase in Consumption	2	6	4	6
Countries did not specialize		Countries did specialize		Gains
Corn: 18 mililon	ushels C	Corn: 24 million bushels		Corn: 6 M
Jeans: 52 million	pairs Je	Jeans: 64 million pairs		Jeans: 12

Example: Specialization and trade

Example: Specialization and trade

Example: Specialization and trade

Desonia

The countries decide to exchange 18 million pounds of grain for 18 million pounds of sugar.

This ratio of goods is known as the price of trade between Candonia and Desonia.

$$
\begin{array}{ll}
\text { Price of trade }=18 / 18=1 & (1 / 2>\text { Price of trade }>3 / 2) \\
& (2 / 3>\text { Price of trade }>2 / 1)
\end{array}
$$

Example: Specialization and trade

Without engaging in international trade, Candonia and Desonia would not have been able to consume at the after-trade consumption bundles.

