PPF and the opportunity cost

	Hours Producing		Prod	uced
Choice	(Trucks)	(Drums)	(Trucks)	(Drums)
Α	8	0	4	0
в	6	2	3	10
С	4	4	2	15
D	2	6	1	17
E	0	8	0	18

PPF and the opportunity cost

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.

Chapter 3

Interdependence and the Gains from Trade

A Parable for the Modern Economy

- Only two goods
 - -Meat
 - -Potatoes
- Only two people
 - -A cattle rancher named Ruby
 - -A potato farmer named Frank
 - Both would like to eat both meat and potatoes

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.

Figure 1 The Production Possibilities Frontier

	Minutes needed to make 1 ounce of meat	Minutes needed to make 1 ounce of potatoes	Amount of meat produced in 8 hours	Amount of potatoes produced in 8 hours
Frank the farmer	60 minutes per ounce	15 minutes per ounce	8 ounces	32 ounces
Ruby the rancher	20 minutes per ounce	10 minutes per ounce	24 ounces	48 ounces

Figure 1 The Production Possibilities Frontier

Frank's production possibilities frontier

Ruby's production possibilities frontier

A Parable for the Modern Economy

- Specialization and trade
 - Farmer Frank specializes in growing potatoes
 - More time growing potatoes
 - Less time raising cattle
 - -Rancher Ruby specializes in raising cattle
 - More time raising cattle
 - Less time growing potatoes

-Trade: 5 oz of meat for 15 oz of potatoes

Figure 2 How Trade Expands the Set of Consumption Opportunities

Figure 2 How Trade Expands the Set of Consumption Opportunities

	Frank's meat	Frank's potatoes	Ruby's meat	Ruby's potatoes
Production and consumption without trade	4 ounces	16 ounces	12 ounces	24 ounces
Production with trade	0 ounce	32 ounces	18 ounces	12 ounces
Trade	Gets 5 ounces	Gives 15 ounces	Gives 5 ounces	Gets 15 ounces
Consumption with trade	5 ounces	17 ounces	13 ounces	27 ounces
Increase in consumption with gains from trade	Increase of 1 ounce	Increase of 1 ounce	Increase of 1 ounce	Increase of 3 ounces

- Absolute advantage
 - The ability to produce a good using fewer inputs than another producer
 - In producing meat: Ruby
 - Ruby needs 20 min. to produce 1 oz of meat
 - Frank needs 60 minutes
 - In producing potatoes: Ruby
 - Ruby needs 10 min. to produce 1 oz of potatoes
 - Frank needs 15 minutes

1

- Opportunity cost
 - -Whatever must be given up to obtain some item
 - Measures the trade-off between the two goods that each producer faces

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.

- Opportunity cost
 - Frank: 60 min. to produce 1 oz meat, and 15 min. to produce 1 oz potatoes
 - To produce 1 more oz meat, give up 4 oz potatoes
 - To produce 1 more oz potatoes, give up ¼ oz meat
 - Ruby: 20 min. to produce 1 oz meat, and 10 min. to produce 1 oz potatoes
 - To produce 1 more oz meat, give up 2 oz potatoes
 - To produce 1 more oz potatoes, give up ½ oz meat

Table 1 The Opportunity Cost of Meat and Potatoes

	Opportunity cost of 1 ounce of meat	Opportunity cost of 1 ounce of potatoes
Frank the farmer	4 ounces of potatoes	One-quarter ounce of meat
Ruby the rancher	2 ounces of potatoes	One-half ounce of meat

- Comparative advantage
 - The ability to produce a good at a lower opportunity cost than another producer
 - Reflects the relative opportunity cost
- Principle of comparative advantage
 - Each good should be produced by the individual that has the smaller opportunity cost of producing that good

14

- Specialize according to comparative advantage

Example: opportunity cost

	Corn	Rye	
	(Bushels per acre)	(Bushels per acre)	
Kevin	20	4	
Maria	28	7	

Each one owns a 12acre plot of land.

Kevin's opportunity cost.

5

Corn:

Rye:

Example: opportunity cost

	Rye	
(Bushels per acre)	(Bushels per acre)	
20	4	
28	7	
	20	

Each one owns a 12acre plot of land.

Maria's opportunity cost.

Corn:

Rye:

Example: comparative advantage

	Corn	Rye	
	(Bushels per acre)	(Bushels per acre)	
Kevin	20	4	
Maria	28	7	

Kevin's opportunity cost.

Corn: 4/20=1/5

Rye: 20/4=5

Maria's opportunity cost.

7

Corn: 7/28=1/4

Rye: 28/7=4

- One person
 - -Can have absolute advantage in both goods
 - Cannot have comparative advantage in both goods
- For different opportunity costs
 - One person has comparative advantage in one good
 - -The other person has comparative advantage in the other good

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.

- Opportunity cost of one good
 Inverse of the opportunity cost of the other
- Gains from specialization and trade
 - -Based on comparative advantage
 - -Total production in economy rises
 - Increase in the size of the economic pie
 - Everyone is better off

Thursday class

Benefits of trade...

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.

- Trade can benefit everyone in society
 - People specialize in activities in which they have a comparative advantage
- The price of trade
 - -Between the two opportunity costs
- The principle of comparative advantage explains:
 - -Interdependence
 - -Gains from trade

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.

Applications of Comparative Advantage

- Should the U.S. trade with other countries?
- Imports
 - -Goods produced abroad and sold domestically
- Exports
 - Goods produced domestically and sold abroad

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.

Country	Corn (Bushels per hour of labor)		Jeans (Pairs per hour of labor)	
Euphoria	4		16	
Contente	6		12	
Conten	te			
Corn:	1M hrs labor	=>	6M corn	
Jeans:	3M hrs labor	=>	36M jeans	
Euphoria				
Corn:	3M hrs labor	=>	12M corn	
Jeans:	1M hrs labor	=>	16M jeans	

They each have 4 million labor hours available per week that they can use to produce corn, jeans, or a combination of both.

3

	Corn	Jeans	
Country	(Bushels per hour of labor)	(Pairs per hour of labor)	
Euphoria	4	16	
Contente	6	12	

4

Contente's opportunity cost

Corn: 12/6 = 2Jeans: 6/12 = 1/2

Euphoria's opportunity cost

Corn: 16/4 = 4Jeans: 4/16 = 1/4

	Corn	Jeans	
Country	(Bushels per hour of labor)	(Pairs per hour of labor)	
Euphoria	4	16	
Contente	6	12	
contente	o	12	

5

Contente's opportunity cost

Corn:12/6 = 2Comparative advantage in the production of cornJeans:6/12 = 1/2

Euphoria's opportunity cost

Corn: 16/4 = 4Jeans: 4/16 = 1/4 **Comparative advantage in the production of jeans**

	Corn	Jeans	
Country	(Bushels per hour of labor)	(Pairs per hour of labor)	
Euphoria	4	16	
Contente	6	12	

6

Suppose that each country completely specializes in the production of the good in which it has a comparative advantage, producing **only** that good.

Contente's production under specialization:

Corn: $6^*4 = 24$ Jeans: $12^*0 = 0$

Euphoria's production under specialization:

Corn: 4*0 = 0Jeans: 16*4 = 64

Suppose the country that produces corn trades **14** million bushels of corn to the other country in exchange for **42** million pairs of jeans.

	Euphoria		Conte	nte
	Corn	Jeans	Corn	Jeans
	(Millions of bushels) (Millions of pairs)	(Millions of bushels)	(Millions of pairs)
Without Trade				
Production	12	16	6	36
Consumption	12	16	6	36
With Trade				
Production	0	64	24	0
Trade action	Imports 14 💌	Exports 42 💌	Exports 14 💌	Imports 42 💌
Consumption	14	22	10	42
Gains from Trade				
Increase in Consumption	2	6	4	6
Countries did not	specialize	Countries dic	specialize	Gains
Corn: 18 million l Jeans: 52 million		Corn: 24 milli Jeans: 64 mil		Corn: 6 M Jeans: 12 M

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.

Candonia's opportunity cost

Candonia's production under specialization:

Sugar: 36/18 = 2Grain: 18/36 = 1/2

Desonia's opportunity cost

Sugar:	24/36 = 2/3
Grain:	36/24 = 3/2

Grain : **36 Desonia's production under specialization:**

0

Sugar : **36** Grain : 0

Sugar :

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.

The countries decide to exchange 18 million pounds of grain for 18 million pounds of sugar.

This ratio of goods is known as the **price of trade** between Candonia and Desonia.

```
Price of trade = 18/18 = 1
```

$$(1/2 > Price of trade > 3/2)$$

 $(2/3 > Price of trade > 2/1)$

Without engaging in international trade, Candonia and Desonia **would not** have been able to consume at the after-trade consumption bundles.

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9th Edition.