PPF and the opportunity cost

	Hours Producing			Produced	
Choice	(Trucks)	(Drums)		(Trucks)	(Drums)
A	8	0		4	0
B	6	2		3	10
C	4	4		2	15
D	2	6		1	17
E	0	8		0	18

PPF and the opportunity cost

Chapter 3

Interdependence and the Gains from Trade

A Parable for the Modern Economy

- Only two goods
-Meat
- Potatoes
- Only two people
- A cattle rancher named Ruby
- A potato farmer named Frank
-Both would like to eat both meat and potatoes

Figure 1 The Production Possibilities Frontier

	Minutes needed to make 1 ounce of meat	Minutes needed to make 1 ounce of potatoes	Amount of meat produced in 8 hours	Amount of potatoes produced in 8 hours
Frank the farmer	60 minutes per ounce	15 minutes per ounce	8 ounces	32 ounces
Ruby the rancher	20 minutes per ounce	10 minutes per ounce	24 ounces	48 ounces

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, $9^{\text {th }}$ Edition.

Figure 1 The Production Possibilities Frontier

Frank's production possibilities frontier

A Parable for the Modern Economy

- Specialization and trade

-Farmer Frank specializes in growing potatoes

- More time growing potatoes
- Less time raising cattle
-Rancher Ruby specializes in raising cattle
- More time raising cattle
- Less time growing potatoes
-Trade: 5 oz of meat for 15 oz of potatoes

Figure 2 How Trade Expands the Set of Consumption Opportunities

Frank's production and consumption

Ruby's production and consumption

Figure 2 How Trade Expands the Set of Consumption Opportunities

	Frank's meat	Frank's potatoes	Ruby's meat	Ruby's potatoes
Production and consumption without trade	4 ounces	16 ounces	12 ounces	24 ounces
Production with trade	0 ounce	32 ounces	18 ounces	12 ounces
Trade	Gets 5 ounces	Gives 15 ounces	Gives 5 ounces	Gets 15 ounces
Consumption with trade	5 ounces	17 ounces	13 ounces	27 ounces
Increase in consumption with gains from trade	Increase of 1 ounce	Increase of 1 ounce	Increase of 1 ounce	Increase of 3 ounces

Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, $9^{\text {th }}$ Edition.

Comparative Advantage

- Absolute advantage
- The ability to produce a good using fewer inputs than another producer
- In producing meat: Ruby
- Ruby needs 20 min . to produce 1 oz of meat
- Frank needs 60 minutes
- In producing potatoes: Ruby
- Ruby needs 10 min. to produce 1 oz of potatoes
- Frank needs 15 minutes

Comparative Advantage

- Opportunity cost
-Whatever must be given up to obtain some item
-Measures the trade-off between the two goods that each producer faces

Comparative Advantage

- Opportunity cost
- Frank: 60 min. to produce 1 oz meat, and 15 min. to produce 1 oz potatoes
- To produce 1 more oz meat, give up 4 oz potatoes
- To produce 1 more oz potatoes, give up $1 / 4$ oz meat
- Ruby: 20 min. to produce 1 oz meat, and 10 min. to produce 1 oz potatoes
- To produce 1 more oz meat, give up 2 oz potatoes
- To produce 1 more oz potatoes, give up $1 / 2$ oz meat

Table 1 The Opportunity Cost of Meat and Potatoes

	Opportunity cost of 1 ounce of meat	Opportunity cost of 1 ounce of potatoes
Frank the farmer	4 ounces of potatoes	One-quarter ounce of meat
Ruby the rancher	2 ounces of potatoes	One-half ounce of meat

Comparative Advantage

- Comparative advantage
- The ability to produce a good at a lower opportunity cost than another producer
- Reflects the relative opportunity cost
- Principle of comparative advantage
- Each good should be produced by the individual that has the smaller opportunity cost of producing that good
- Specialize according to comparative advantage

Example: opportunity cost

Example: opportunity cost

Example: comparative advantage

Comparative Advantage

- One person
- Can have absolute advantage in both goods
-Cannot have comparative advantage in both goods
- For different opportunity costs
-One person has comparative advantage in one good
-The other person has comparative advantage in the other good

Comparative Advantage

- Opportunity cost of one good - Inverse of the opportunity cost of the other
- Gains from specialization and trade
-Based on comparative advantage
-Total production in economy rises
- Increase in the size of the economic pie
- Everyone is better off

Thursday class

Benefits of trade...

Comparative Advantage

- Trade can benefit everyone in society -People specialize in activities in which they have a comparative advantage
- The price of trade -Between the two opportunity costs
- The principle of comparative advantage explains:
- Interdependence
- Gains from trade

Applications of Comparative Advantage

Should the U.S. trade with other countries?

- Imports
-Goods produced abroad and sold domestically
- Exports
-Goods produced domestically and sold abroad

Example: benefits of trade

	Corn Country (Bushels per hour of labor)	Jeans (Pairs per hour of labor)
Euphoria	4	16
Contente	6	12

They each have 4 million labor hours available per week that they can use to produce corn, jeans, or a combination of both.

Contente

Corn:	1 M hrs labor	=>	6 M corn
Jeans: 3 M hrs labor	$=>$	36 M jeans	

Euphoria

Corn:	3 M hrs labor	=>	12 M corn
Jeans:	1 M hrs labor	=>	16 M jeans

Example: benefits of trade

10	Corn	Jeans
	Country	(Bushels per hour of labor)
(Pairs per hour of labor)		
Euphoria	4	16

Contente's opportunity cost
Corn: $\quad 12 / 6=2$
Jeans: $6 / 12=1 / 2$

Euphoria's opportunity cost

Corn: $\quad 16 / 4=4$
Jeans: $4 / 16=1 / 4$

Example: benefits of trade

Country	Corn (Bushels per hour of labor)	Jeans (Pairs per hour of labor)
Euphoria	4	16
Contente	6	12

Contente's opportunity cost

Corn:	$12 / 6=2$
Jeans: $\quad 6 / 12=1 / 2$	

Euphoria's opportunity cost
Corn: $\quad 16 / 4=4$
Jeans: $4 / 16=1 / 4 \rightleftharpoons$ Comparative advantage in the production of jeans

Example: benefits of trade

	Corn (Bushels per hour of labor)	Jeans (Pairs per hour of labor)
Euphoria	4	16
Contente	6	12

Suppose that each country completely specializes in the production of the good in which it has a comparative advantage, producing only that good.

Contente's production under specialization:
Corn: $\quad 6 * 4=24$
Jeans: $12^{*} 0=0$

Euphoria's production under specialization:

Corn: $\quad 4^{*} 0=0$
Jeans: $16 * 4=64$

Example: benefits of trade

Suppose the country that produces corn trades 14 million bushels of corn to the other country in exchange for 42 million pairs of jeans.

	Euphoria		Contente	
	Corn (Millions of bushels)	Jeans (Millions of pairs)	Corn (Millions of bushels)	Jeans (Millions of pairs)
Without Trade				
Production	12	16	6	36
Consumption	12	16	6	36
With Trade				
Production	0	64	24	0
Trade action	Imports 14 V	Exports 42	Exports 14	Imports 42 V
Consumption	14	22	10	42
Gains from Trade				
Increase in Consumption	2	6	4	6
Countries did not specialize		Countries did specialize		Gains
Corn: 18 million	ushels Co	Corn: 24 million bushels		Coln: 6 M
Jeans: 52 milion	pairs Je	Jeans: 64 miliion pairs		Jeans: 12
Professor Galvez-Soriano lecture notes. Based on N. Gregory Mankiw, Principles of Microeconomics, 9 ${ }^{\text {th }}$ Edition.				

Example: Specialization and trade

 Edition.

Example: Specialization and trade

Example: Specialization and trade

Desonia

The countries decide to exchange 18 million pounds of grain for 18 million pounds of sugar.

This ratio of goods is known as the price of trade between Candonia and Desonia.

$$
\begin{array}{ll}
\text { Price of trade }=18 / 18=1 & (1 / 2>\text { Price of trade }>3 / 2) \\
& (2 / 3>\text { Price of trade }>2 / 1)
\end{array}
$$

Example: Specialization and trade

Without engaging in international trade, Candonia and Desonia would not have been able to consume at the after-trade consumption bundles.

